Text preview for : ir2130.pdf part of International Rectifier IR2130 3-phase bridge rectifier



Back to : ir2130.pdf | Home

Data Sheet No. PD-6.019F

IR2130
3-PHASE BRIDGE DRIVER
Features
n Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for all channels n Over-current shutdown turns off all six drivers n Independent half-bridge drivers n Matched propagation delay for all channels n Outputs out of phase with inputs

Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 200 mA / 420 mA 10 - 20V 675 & 425 ns 2.5 µs

Description
The IR2130 is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with 5V CMOS or LSTTL outputs. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.

Packages

Typical Connection

CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL

B-135

IR2130
bsoiuue MaximumiRbtongs
Absxlmtm Matimus iadicgt nuitaie s stainsdblymnt heco dawaiehtdamhge eoiteemdyvocc ma lc ur.tAll valrageepara rtebs aeuaesollate oetages rdftr nSe. To VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information s sFognrin 5iguheo g0 t3riu¸hP5r.

eyibil
Vi1h2S3 Vi1,2S3 V HOg, ,i VCd V S VLO1,2,3 VIN VFLT VCtO rCtdlSwdb Pe

ra¸aaeuer DnfMnntioa
H gl aiiegFloptin outpmy¸Vol3a5e H gl aidegFOoften Oftset¸VBl,a,e eiFhoStde loapitgVOutaue Volt2g3 on ioeia diLegicuFixydVSlpale -o.t¸g5 LugdcVGro-n2 Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Oae amilnfl A plipitrVOutauu ¸oSt ge OaeramilnfleA pnieitrnI vnrui goItput VVlSa-e AlOowael uffsyt Slpale Voatsge tr--n5i¸n/ PawkrgD soier iins@pTt on 2 TA¸2+ 5eC (28PLea¸ .Ii) (28ILea-- 1O6C) 44 Ce¸d¸P.Ci) TeeimtlnRes suanci, Jtn tmon no Ambient (28 Lead DIP) (28 Lead SOIC) (44 Lead PLCC) Junction Temperature Storage Temperature Lead ueep(rotdre nS,l1e iego d0)s--con0s)

Valoe MiU.
-0.S V 152V31- 23 -S1,3,V 1 2.3 -0S3 ¸ CC 25 -0.3 VSS - 0.3 3SV C +.0 V¸SC- 0 3 3SV C +.3 s -- ¸ -- -- -- -- -- -55 ´

Msx¸
52, +B0,3,¸ + 1.3 + B0,3,i + C.3 2o ViC + 0.3 VCC + 0.3 VCC + 0.3 3Ci V A.3 ViCV+A0.3 3 C ¸ V /.t 50 1.5 1.( 2.0 83 78 63 150 150 ¸0`

Bn,t,

V

V/nc 4

RaA

°C/W

TJ TS TL

eC

Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to V S0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.

Symbol
VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCATA

Parameter Definition
High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage (HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Ambient Temperature

Value Min.
VS1,2,3 + 10 Note 1 VS1,2,3 10 -5 0 VSS VSS VSS VSS -40

Max.
VS1,2,3 + 20 600 VB1,2,3 20 5 VCC VSS + 5 VCC 5 5 125

Units

V

°C

Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).

B-136 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL

IR2130
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5.

Symbol
ton toff tr tf t itrip t bl tflt tflt,in tfltclr DT SR+ SR-

Parameter Definition
Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to FAULT Indication Delay Input Filter Time (All Six Inputs) LIN1,2,3 to FAULT Clear Time Deadtime Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-)

Value Figure Min. Typ. Max. Units Test Conditions
11 12 13 14 15 -- 16 -- 17 18 19 20 500 300 -- -- 400 -- 335 -- 6.0 1.3 4.4 2.4 675 425 80 35 660 400 590 310 9.0 2.5 6.2 3.2 850 550 125 55 920 -- 845 -- 12.0 3.7 -- -- VIN = 0 & 5V VS1,2,3 = 0 to 600V ns V IN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V

µs V/µs

Static Electrical Characteristics
VBIAS (VCC , VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Symbol
VIH VIL VIT,TH+ VOH VOL I LK IQBS IQCC IIN+ IINI ITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT

Parameter Definition
Logic "0" Input Voltage (OUT = LO) Logic "1" Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current (OUT = HI) Logic "0" Input Bias Current (OUT = LO) "High" ITRIP Bias Current "Low" ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance

Figure Min.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 2.2 -- 400 -- -- -- -- -- -- -- -- -- 7.5 7.1 8.3 8.0 --

Value Typ. Max. Units Test Conditions
-- -- 490 -- -- -- 15 3.0 450 225 75 -- 8.35 7.95 9.0 8.7 55 -- 0.8 580 100 100 50 30 4.0 650 400 150 100 9.2 8.8 9.7 9.4 75 V V

mV µA mA µA nA

VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V

CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL

B-137

IR2130
Static Electrical Characteristics -- Continued
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and I IN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Symbol
IO+ IOVOS ICACMRR PSRR VOH,AMP VOL,AMP ISRC,AMP ISRC,AMP IO+,AMP IO-,AMP

Parameter Definition
Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current Op. Amp. Output Sink Current Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Shor t Circuit Current

Figure Min.
38 39 40 41 42 43 44 45 46 47 48 49 200 420 -- -- 60 55 5.0 -- 2.3 1.0 -- --

Value Typ. Max. Units Test Conditions
250 500 -- -- 80 75 5.2 -- 4.0 2.1 4.5 3.2 -- -- 30 4.0 -- -- 5.4 20 -- -- 6.5 5.2 mA mA VO = 0V VIN = 0V , PW 10 µs VO = 15V VIN = 5V , PW 10 µs VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 10V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V

mV nA dB V mV

Lead Assignments

28 Lead DIP

44 Lead PLCC w/o 12 Leads

28 Lead SOIC (Wide Body)

IR2130

IR2130J Part Number

IR2130S

B-138 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL

IR2130
Functional Block Diagram

Lead Definitions
Lead Symbol Description
HIN1,2,3 LIN1,2,3 FAULT VCC ITRIP CAO CAVSS VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 VS0 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase Logic inputs for low side gate driver output (LO1,2,3), out of phase Indicates over-current or undervoltage lockout (low side) has occurred, negative logic Low side and logic fixed supply Input for over-current shutdown Output of current amplifier Negative input of current amplifier Logic ground High side floating supplies High side gate drive outputs High side floating supply returns Low side gate drive outputs Low side return and positive input of current amplifier CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-139

IR2130
Device Information
Process & Design Rule Transistor Count Die Size Die Outline HVDCMOS 4.0 µm 700 126 X 175 X 26 (mil)

Thickness of Gate Oxide Connections First Layer

Second Layer Contact Hole Dimension Insulation Layer Passivation (1) Passivation (2) Method of Saw Method of Die Bond Wire Bond Leadframe

Material Width Spacing Thickness Material Width Spacing Thickness Material Thickness Material Thickness Material Thickness

Package Remarks: * Patent Pending

Method Material Material Die Area Lead Plating Types Materials

800Å Poly Silicon 4 µm 6 µm 5000Å Al - Si (Si: 1.0% ±0.1%) 6 µm 9 µm 20,000Å 8 µm X 8 µm PSG (SiO 2) 1.5 µm PSG (SiO 2) 1.5 µm Proprietary* Proprietary* Full Cut Ablebond 84 - 1 Thermo Sonic Au (1.0 mil / 1.3 mil) Cu Ag Pb : Sn (37 : 63) 28 Lead PDIP & SOIC / 44 Lead PLCC EME6300 / MP150 / MP190

B-140 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL

IR2130
HIN1,2,3

LIN1,2,3

ITRIP FAULT HO1,2,3 LO1,2,3

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

HIN1,2,3

HIN1,2,3 LIN1,2,3
50% 50% 50% 50%

LIN1,2,3
ton tr 90% 50% 50% toff 90% tf

LO1,2,3

HO1,2,3
DT DT

HO1,2,3 LO1,2,3

10%

10%

Figure 3. Deadtime Waveform Definitions

Figure 4. Input/Output Switching Time Waveform Definitions

50%

LIN1,2,3 VCC
50%

ITRIP

VS0 CA50% 50%

+ CAO VSS

FAULT

LO1,2,3
50% t flt titr ip tfltclr

VSS

Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions

Figure 6. Diagnostic Feedback Operational Amplifier Circuit

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-141

IR2130
15V VCC 3V CA0V VS0 + CAO VSS 50 pF
+

15V V S0 CA+ V SS 20k 1k V CC CAO

T1 3V V 0V 10% 90%

T2

0.2V

V V SR+ = SR- = T2 T1 Figure 7. Operational Amplifier Slew Rate Measurement

VOS =

VCAO 21

- 0.2V

Figure 8. Operational Amplifier Input Offset Voltage Measurement
VCC

15V V CC CAV S0 CAO + V SS
0.2V
+

VS0 CA-

+ CAO VSS

20k 1k

Measure VCAO1 at VS0 = 0.1V VCAO2 at VS0 = 5V (VCAO1-0.1V) - (VCAO2-5V) (dB) CMRR = -20 *LOG 4.9V Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements

Measure VCAO1 at VCC = 10V VCAO2 at VCC = 20V VCAO1 - VCAO2 PSRR = -20*LOG (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements

1.50

1.50

1.20 Turn-On Delay Time (µs)
Max.

1.20 Turn-On Delay Time (µs)

0.90
Typ.

0.90

Max.

Typ.

0.60

Min.

0.60
Min.

0.30

0.30

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)

Figure 11A. Turn-On Time vs. Temperature

Figure 11B. Turn-On Time vs. Voltage

B-142 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
1.00 1.00 0.80 Turn-Off Delay Time (µs) Turn-Off Delay Time (µs) 0.80

0.60

Max.

0.60

Max.

Typ.

0.40

Typ.

0.40
Min.

Min.

0.20

0.20

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V BIAS Supply Voltage (V)

Figure 12A. Turn-Off Time vs. Temperature

Figure 12B. Turn-Off Time vs. Voltage

250

250

200 Turn-On Rise Time (ns) Turn-On Rise Time (ns)

200
Max.

150

150

100

Max.

100

Typ.

Typ.

50

50

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VBIAS Supply Voltage (V)

Figure 13A. Turn-On Rise Time vs. Temperature

Figure 13B. Turn-On Rise Time vs. Voltage

125

125

100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns)

100

75

75
Max.

50
Max. Typ.

50

Typ.

25

25

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VBIAS Supply Voltage (V)

Figure 14A. Turn-Off Fall Time vs. Temperature

Figure 14B. Turn-Off Fall Time vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-143

IR2130
1.50 ITRIP to Output Shutdown Delay Time (µs) ITRIP to Output Shutdown Delay Time (µs) 1.50 1.20
Max.

1.20
Max.

0.90
Typ.

0.90
Typ.

0.60
Min.

0.60
Min.

0.30

0.30

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V BIAS Supply Voltage (V)

Figure 15A. ITRIP to Output Shutdown Time vs. Temperature

Figure 15B. ITRIP to Output Shutdown Time vs. Voltage

1.50 ITRIP to FAULT Indication Delay Time (µs) ITRIP to FAULT Indication Delay Time (µs)

1.50

1.20
Max.

1.20

0.90
Typ.

0.90

Max.

0.60
Min.

0.60

Typ.

Min.

0.30

0.30

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 16A. ITRIP to FAULT Indication Time vs. Temperature

Figure 16B. ITRIP to FAULT Indication Time vs. Voltage

25.0

25.0

LIN1,2,3 to FAULT Clear Time (µs)

20.0

LIN1,2,3 to FAULT Clear Time (µs)

20.0

15.0
Max.

15.0
Max.

10.0

Typ. Min.

10.0

Typ.

Min.

5.0

5.0

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature

Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage

B-144 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
7.50 7.50 6.00 6.00

Deadtime (µs)

4.50

Deadtime (µs)

Max.

4.50
Max.

3.00

Typ.

3.00

Typ.

Min.

1.50

1.50

Min.

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V BIAS Supply Voltage (V)

Figure 18A. Deadtime vs. Temperature

Figure 18B. Deadtime vs. Voltage

10.0

10.0

8.0 Amplifier Slew Rate + (V/µs)
Typ.

8.0 Amplifier Slew Rate + (V/µs)
Typ.

6.0
Min.

6.0
Min.

4.0

4.0

2.0

2.0

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 19A. Amplifier Slew Rate (+) vs. Temperature

Figure 19B. Amplifier Slew Rate (+) vs. Voltage

5.00

5.00

4.00 Amplifier Slew Rate - (V/µs)
Typ.

4.00 Amplifier Slew Rate - (V/µs)
Typ.

3.00
Min.

3.00
Min.

2.00

2.00

1.00

1.00

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 20A. Amplifier Slew Rate (-) vs. Temperature

Figure 20B. Amplifier Slew Rate (-) vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-145

IR2130
5.00 5.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 4.00

3.00
Min.

3.00
Min.

2.00

2.00

1.00

1.00

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 21A. Logic "0" Input Threshold vs. Temperature

Figure 20B. Logic "0" Input Threshold vs. Voltage

5.00

5.00

4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V)
Max.

4.00

3.00

3.00

2.00

2.00

1.00

1.00

Max.

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 22A. Logic "1" Input Threshold vs. Temperature

Figure 22B. Logic "1" Input Threshold vs. Voltage

750 ITRIP Input Positive Going Threshold (mV) ITRIP Input Positive Going Threshold (mV)

750

600

Max.

600

Max. Typ.

Typ.

450
Min.

450

Min.

300

300

150

150

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 23A. ITRIP Input Positive Going Threshold vs. Temperature

Figure 23B. ITRIP Input Positive Going Threshold vs. Voltage

B-146 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V)
Max.

0.80

0.60

0.60

0.40

0.40

0.20

0.20
Max.

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V BIAS Supply Voltage (V)

Figure 24A. High Level Output vs. Temperature

Figure 24B. High Level Output vs. Voltage

1.00

1.00

0.80 Low Level Output Voltage (V) Low Level Output Voltage (V)
Max.

0.80

0.60

0.60

0.40

0.40

0.20

0.20
Max.

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V BIAS Supply Voltage (V)

Figure 25A. Low Level Output vs. Temperature

Figure 25B. Low Level Output vs. Voltage

500

500

Offset Supply Leakage Current (µA)

300

Offset Supply Leakage Current (µA)

400

400

300

200

200

100
Max.

100
Max.

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 0 100 200 300 400 500 600 V B Boost Voltage (V)

Figure 26A. Offset Supply Leakage Current vs. Temperature

Figure 26B. Offset Supply Leakage Current vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-147

IR2130
100 100 80 VBS Supply Current (µA) VBS Supply Current (µA)
Max.

80

60

60

40

40

20
Typ.

20

Max.

Typ.

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)

Figure 27A. VBS Supply Current vs. Temperature

Figure 27B. VBS Supply Current vs. Voltage

10.0

10.0

8.0 VCC Supply Current (mA) V CC Supply Current (mA)

8.0

6.0

6.0

4.0
Max. Typ.

4.0
Max.

2.0

2.0

Typ.

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 28A. VCC Supply Current vs. Temperature

Figure 28B. VCC Supply Current vs. Voltage

1.25

1.25

Logic "1" Input Bias Current (mA)

0.75

Logic "1" Input Bias Current (mA)

1.00

1.00

0.75

0.50

Max.

0.50

Max. Typ.

Typ.

0.25

0.25

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 29A. Logic "1" Input Current vs. Temperature

Figure 29A. Logic "1" Input Current vs. Voltage

B-148 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
1.25 1.25 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) 1.00 1.00

0.75

0.75

0.50
Max.

0.50

0.25
Typ.

0.25

Max. Typ.

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 30A. Logic "0" Input Current vs. Temperature

Figure 30B. Logic "0" Input Current vs. Voltage

500

500

400 "High" ITRIP Bias Current (µA) "High" ITRIP Bias Current (µA)

400

300

300

200

Max.

200
Max.

100

Typ.

100

Typ.

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 31A. "High" ITRIP Current vs. Temperature

Figure 31B. "High" ITRIP Current vs. Voltage

250

500

200 "Low" ITRIP Bias Current (µA) "Low" ITRIP Bias Current (nA)

400

150

300

100
Max.

200

Max.

50

100

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 32A. "Low" ITRIP Current vs. Temperature

Figure 32B. "Low" ITRIP Current vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-149

IR2130
11.0 11.0 10.0 10.0

VBS Undervoltage Lockout + (V)

9.0

Max.

VBS Undervoltage Lockout - (V)

9.0
Max.

Typ.

8.0
Min.

8.0

Typ.

7.0

7.0

Min.

6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

Figure 33. VBS Undervoltage (+) vs. Temperature

Figure 34. VBS Undervoltage (-) vs. Temperature

11.0

11.0

VCC Undervoltage Lockout + (V)

Max.

V CC Undervoltage Lockout - (V)

10.0

10.0
Max.

9.0

Typ.

9.0
Typ.

Min.

8.0

8.0

Min.

7.0

7.0

6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

Figure 35. VCC Undervoltage (+) vs. Temperature

Figure 36. VCC Undervoltage (-) vs. Temperature

250

250

FAULT- Low On Resistance (ohms)

200

FAULT- Low On Resistance (ohms)

200

150

150

100

100

Max. Typ.

Max.

50
Typ.

50

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 37A. FAULT Low On Resistance vs. Temperature

Figure 37B. FAULT Low On Resistance vs. Voltage

B-150 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
500 500 400 Output Source Current (mA) Output Source Current (mA) 400

300

Typ. Min.

300

200

200
Typ.

100

100

Min.

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VBIAS Supply Voltage (V)

Figure 38A. Output Source Current vs. Temperature

Figure 38B. Output Source Current vs. Voltage

750

750

600 Output Sink Current (mA)

Typ.

625 Output Sink Current (mA)

Min.

500

450

375
Typ.

300

250
Min.

150

125

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VBIAS Supply Voltage (V)

Figure 39A. Output Sink Current vs. Temperature

Figure 39B. Output Sink Current vs. Voltage

50

50

Amplifier Input Offset Voltage (mV)

Max.

30

Amplifier Input Offset Voltage (mV)

40

40

30
Max.

20

20

10

10

0 -50

0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) VCC Supply Voltage (V)

Figure 40A. Amplifier Input Offset vs. Temperature

Figure 40B. Amplifier Input Offset vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-151

IR2130
10.0 10.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) 8.0

6.0

6.0

Max.

4.0

4.0

Max.

2.0

2.0

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 41A. CA- Input Current vs. Temperature

Figure 41B. CA- Input Current vs. Voltage

100

100

80 Amplifier CMRR (dB)

Typ.

80 Amplifier CMRR (dB)

Typ.

60

Min.

60

Min.

40

40

20

20

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 42A. Amplifier CMRR vs. Temperature

Figure 42B. Amplifier CMRR vs. Voltage

100

100

80
Typ.

80 Amplifier PSRR (dB)

Typ.

Amplifier PSRR (dB)

60
Min.

60

Min.

40

40

20

20

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 43A. Amplifier PSRR vs. Temperature

Figure 43B. Amplifier PSRR vs. Voltage

B-152 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
6.00 6.00 Amplifier High Level Output Voltage (V) 5.70 Amplifier High Level Output Voltage (V) 5.70

5.40

Max.

5.40

Max.

Typ.

Typ.

5.10
Min.

5.10
Min.

4.80

4.80

4.50 -50 -25 0 25 50 75 100 125 Temperature (°C)

4.50 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 44A. Amplifier High Level Output vs. Temperature

Figure 44B. Amplifier High Level Output vs. Voltage

100 Amplifier Low Level Output Voltage (mV) Amplifier Low Level Output Voltage (mV)

100

80

80

60

60

40

40

Max.

Max.

20

20

0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 45A. Amplifier Low Level Output vs. Temperature

Figure 45B. Amplifier Low Level Output vs. Voltage

10.0

10.0

Amplifier Output Source Current (mA)

8.0

Amplifier Output Source Current (mA)

8.0

6.0
Typ.

6.0

4.0
Min.

4.0

Typ.

2.0

2.0
Min.

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 46A. Amplifier Output Source Current vs. Temperature

Figure 46B. Amplifier Output Source Current vs. Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-153

IR2130
5.00 5.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) 4.00 4.00

3.00
Typ.

3.00

2.00
Min.

2.00
Typ. Min.

1.00

1.00

0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.00 10 12 14 16 18 20 VCC Supply Voltage (V)

Figure 47A. Amplifier Output Sink Current vs. Temperature

Figure 47B. Amplifier Output Sink Current vs. Voltage

15.0

15.0

Output High Short Circuit Current (mA)

12.0

Output High Short Circuit Current (mA)

12.0

9.0
Max.

9.0

6.0

Typ.

6.0
Max.

3.0

3.0
Typ.

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature

Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage

15.0

15.0

Output Low Short Circuit Current (mA)

12.0

Output Low Short Circuit Current (mA)

12.0

9.0

9.0

6.0

Max.

6.0
Max.

Typ.

3.0

3.0
Typ.

0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)

0.0 10 12 14 16 18 20 V CC Supply Voltage (V)

Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature

Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage

B-154 CONTROL INTEGRATED C IRCUIT DESIGNERS MANUAL

IR2130
50
480V

50
480V

45 Junction Temperature (°C) Junction Temperature (°C)

45

40

320V

40
320V

35
160V

35
160V

30

0V

30

0V

25

25

20 1E+2

1E+3 Frequency (Hz)

1E+4

1E+5

20 1E+2

1E+3 Frequency (Hz)

1E+4

1E+5

Figure 50. IR2130 TJ vs. Frequency (IRF820) RGATE = 33 , VCC = 15V

Figure 51. IR2130 TJ vs. Frequency (IRF830) RGATE = 20, VCC = 15V

100

140

480V

120 Junction Temperature (°C) Junction Temperature (°C) 80
320V

100

60
480V 320V

80

160V

60

0V

40

160V 0V

40

20 1E+2

1E+3 Frequency (Hz)

1E+4

1E+5

20 1E+2

1E+3 Frequency (Hz)

1E+4

1E+5

Figure 52. IR2130 TJ vs. Frequency (IRF840) RGATE = 15 , VCC = 15V

Figure 53. IR2130 TJ vs. Frequency (IRF450) RGATE = 10, VCC = 15V

0.0

-3.0 VS Offset Supply Voltage (V)
Typ.

-6.0

-9.0

-12.0

-15.0 10 12 14 16 18 20 V BS Floating Supply Voltage (V)

Figure 54. Maximum VS Negative Offset vs. VBS Supply Voltage

CONTROL I NTEGRATED CIRCUIT DESIGNERS MANUAL B-155