Text preview for : 4551.pdf part of ON Semiconductor 4551 Quad 2-channel Analog MX/DMX



Back to : 4551.pdf | Home

MC14551B Quad 2-Channel Analog Multiplexer/Demultiplexer
The MC14551B is a digitally­controlled analog switch. This device implements a 4PDT solid state switch with low ON impedance and very low OFF Leakage current. Control of analog signals up to the complete supply voltage range can be achieved.
http://onsemi.com MARKING DIAGRAMS
16 PDIP­16 P SUFFIX CASE 648 MC14551BCP AWLYYWW 1 16 SOIC­16 D SUFFIX CASE 751B 1 14551B AWLYWW

· Triple Diode Protection on All Control Inputs · Supply Voltage Range = 3.0 Vdc to 18 Vdc · Analog Voltage Range (VDD ­ VEE) = 3.0 to 18 V · · · ·

Note: VEE must be v VSS Linearized Transfer Characteristics Low Noise -- 12 nVCycle, f 1.0 kHz typical For Low RON, Use The HC4051, HC4052, or HC4053 High­Speed CMOS Devices Switch Function is Break Before Make

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS (2.)
Symbol VDD Parameter Value Unit V V DC Supply Voltage Range (Referenced to VEE, VSS VEE) ­ 0.5 to + 18.0 Vin, Vout Input or Output Voltage (DC or Transient) (Referenced to VSS for Control Input & VEE for Switch I/O) Input Current (DC or Transient), per Control Pin Switch Through Current Power Dissipation, per Package Ambient Temperature Range Storage Temperature Range Lead Temperature (8­Second Soldering)
(3.)

16 SOEIAJ­16 F SUFFIX CASE 966 1 A WL, L YY, Y WW, W = Assembly Location = Wafer Lot = Year = Work Week MC14551B ALYW

­ 0.5 to VDD + 0.5

Iin Isw PD TA Tstg TL

± 10 ± 25 500 ­ 55 to + 125 ­ 65 to + 150 260

mA mA mW _C _C _C

ORDERING INFORMATION
Device MC14551BCP MC14551BD MC14551BDR2 MC14551BF Package PDIP­16 SOIC­16 SOIC­16 SOEIAJ­16 Shipping 2000/Box 48/Rail 2500/Tape & Reel See Note 1.

2. Maximum Ratings are those values beyond which damage to the device may occur. 3. Temperature Derating: Plastic "P and D/DW" Packages: ­ 7.0 mW/_C From 65_C To 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high­impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD for control inputs and VEE (Vin or Vout) VDD for Switch I/O. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS, VEE or VDD). Unused outputs must be left open.

1. For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

© Semiconductor Components Industries, LLC, 2000

1

August, 2000 ­ Rev. 4

Publication Order Number: MC14551B/D

MC14551B
PIN ASSIGNMENT
W1 X0 X1 X Y Y0 VEE VSS 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 VDD W0 W Z Z1 Z0 Y1 CONTROL

9 15 1 2 3 6 10 11 12

CONTROL W W0 W1 X0 X1 Y0 Y1 Z0 Z1 X

14 4 COMMONS OUT/IN

SWITCHES IN/OUT

Y Z

5 13

VDD = Pin 16 VSS = Pin 8 VEE = Pin 7

Control 0 1

ON W0 X0 Y0 Z0 W1 X1 Y1 Z1

NOTE: Control Input referenced to VSS, Analog Inputs and Outputs reference to VEE. VEE must be v VSS.

http://onsemi.com
2

MC14551B

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS
­ 55_C 25_C 125_C Characteristic Symbol VDD Test Conditions Min Max Min Typ (4.) Max Min Max Unit SUPPLY REQUIREMENTS (Voltages Referenced to VEE) Power Supply Voltage Range Quiescent Current Per Package VDD IDD -- 5.0 10 15 VDD ­ 3.0 VSS VEE Control Inputs: Vin = VSS or VDD, Switch I/O: VEE v VI/O v VDD, and Vswitch v 500 mV (5.) TA = 25_C only (The channel component, (Vin ­ Vout)/Ron, is not included.) 3.0 -- -- -- 18 5.0 10 20 3.0 -- -- -- -- 0.005 0.010 0.015 18 5.0 10 20 3.0 -- -- -- 18 150 300 600 V µA Total Supply Current (Dynamic Plus Quiescent, Per Package) ID(AV) 5.0 10 15 Typical (0.07 µA/kHz) f + IDD (0.20 µA/kHz) f + IDD (0.36 µA/kHz) f + IDD µA CONTROL INPUT (Voltages Referenced to VSS) Low­Level Input Voltage VIL 5.0 10 15 5.0 10 15 15 -- Ron = per spec, Ioff = per spec Ron = per spec, Ioff = per spec Vin = 0 or VDD -- -- -- 3.5 7.0 11 -- -- 1.5 3.0 4.0 -- -- -- ±0.1 -- -- -- -- 3.5 7.0 11 -- -- 2.25 4.50 6.75 2.75 5.50 8.25 ±0.00001 5.0 1.5 3.0 4.0 -- -- -- ±0.1 7.5 -- -- -- 3.5 7.0 11 -- -- 1.5 3.0 4.0 -- -- -- ±1.0 -- V High­Level Input Voltage VIH V Input Leakage Current Input Capacitance Iin Cin µA pF SWITCHES IN/OUT AND COMMONS OUT/IN -- W, X, Y, Z (Voltages Referenced to VEE) Recommended Peak­to­ Peak Voltage Into or Out of the Switch Recommended Static or Dynamic Voltage Across the Switch (5.) (Figure 3) Output Offset Voltage ON Resistance VI/O -- Channel On or Off 0 VDD 0 -- VDD 0 VDD Vp­p Vswitch -- Channel On 0 600 0 -- 600 0 300 mV VOO Ron -- 5.0 10 15 5.0 10 15 15 Vin = VIL or VIH (Control) Channel to Channel or Any One Channel Switch Off Vin = 0 V, No Load Vswitch v 500 mV (5.), Vin = VIL or VIH (Control), and Vin = 0 to VDD (Switch) -- -- -- -- 800 400 220 70 50 45 ±100 -- -- -- -- -- -- -- -- 10 250 120 80 25 10 10 ±0.05 -- 1050 500 280 70 50 45 ±100 -- -- -- -- -- -- -- -- -- 1200 520 300 135 95 65 ±1000 µV ON Resistance Between Any Two Channels in the Same Package Off­Channel Leakage Current (Figure 8) Ron -- -- -- -- Ioff nA Capacitance, Switch I/O Capacitance, Common O/I Capacitance, Feedthrough (Channel Off) CI/O CO/I CI/O -- -- -- -- Pins Not Adjacent Pins Adjacent -- -- -- -- -- -- -- -- -- -- -- -- 10 17 0.15 0.47 -- -- -- -- -- -- -- -- -- -- -- -- pF pF pF 4. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance. 5. For voltage drops across the switch (Vswitch) > 600 mV ( > 300 mV at high temperature), excessive VDD current may be drawn; i.e. the current out of the switch may contain both VDD and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

http://onsemi.com
3

MC14551B

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (CL = 50 pF, TA = 25_C, VEE v VSS)
Characteristic Symbol VDD ­ VEE Vdc Min Typ (6.) Max Unit ns Propagation Delay Times Switch Input to Switch Output (RL = 10 k) tPLH, tPHL = (0.17 ns/pF) CL + 26.5 ns tPLH, tPHL = (0.08 ns/pF) CL + 11 ns tPLH, tPHL = (0.06 ns/pF) CL + 9.0 ns Control Input to Output (RL = 10 k) VEE = VSS (Figure 4) tPLH, tPHL 5.0 10 15 tPLH, tPHL 5.0 10 15 -- BW 10 10 -- -- -- -- -- 350 140 100 0.07 17 875 350 250 -- -- % MHz -- -- -- 35 15 12 90 40 30 ns Second Harmonic Distortion RL = 10 k, f = 1 kHz, Vin = 5 Vp­p Bandwidth (Figure 5) RL = 1 k, Vin = 1/2 (VDD ­ VEE) p­p, 20 Log (Vout/Vin) = ­ 3 dB, CL = 50 pF Off Channel Feedthrough Attenuation, Figure 5 RL = 1 k, Vin = 1/2 (VDD ­ VEE) p­p, fin = 55 MHz Channel Separation (Figure 6) RL = 1 k, Vin = 1/2 (VDD ­ VEE) p­p, fin = 3 MHz Crosstalk, Control Input to Common O/I, Figure 7 R1 = 1 k, RL = 10 k, Control tr = tf = 20 ns -- 10 -- ­ 50 -- dB -- 10 -- ­ 50 -- dB -- 10 -- 75 -- mV 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

http://onsemi.com
4

MC14551B

VDD IN/OUT

VDD

VDD OUT/IN

VEE

VDD LEVEL CONVERTED CONTROL

IN/OUT CONTROL VEE

OUT/IN

Figure 1. Switch Circuit Schematic
16 VDD

CONTROL 9

LEVEL CONVERTER

CONTROL

8 W0 15 W1 1 X0 2 X1 3 Y0 6 Y1 10 Z0 11 Z1 12

VSS

7

VEE 14 W

4 X

5 Y

13 Z

Figure 2. MC14551B Functional Diagram

http://onsemi.com
5

MC14551B
TEST CIRCUITS
CONTROL SECTION OF IC ON SWITCH PULSE GENERATOR V SOURCE VDD VEE VEE VDD LOAD

CONTROL RL CL

Vout

Figure 3. V Across Switch

Figure 4. Propagation Delay Times, Control to Output

Control input used to turn ON or OFF the switch under test. RL ON CONTROL RL Vout CL = 50 pF CONTROL OFF RL Vin VDD - VEE 2 VDD - VEE 2 Vin Vout CL = 50 pF

Figure 5. Bandwidth and Off­Channel Feedthrough Attenuation

Figure 6. Channel Separation (Adjacent Channels Used for Setup)

OFF CHANNEL UNDER TEST VDD CONTROL SECTION OF IC VEE OTHER CHANNEL(S) VEE VDD VEE VDD

CONTROL RL R1

Vout CL = 50 pF

Figure 7. Crosstalk, Control Input to Common O/I

Figure 8. Off Channel Leakage

VDD KEITHLEY 160 DIGITAL MULTIMETER 10 k VDD VEE = VSS 1 k RANGE X/Y PLOTTER

Figure 9. Channel Resistance (RON) Test Circuit

http://onsemi.com
6

MC14551B
TYPICAL RESISTANCE CHARACTERISTICS
350 RON, ON" RESISTANCE (OHMS) RON, ON" RESISTANCE (OHMS) 300 250 200 150 100 50 0 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 6.0 TA = 125°C 25°C -55°C 8.0 10 350 300 250 200 150 100 50 0 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 TA = 125°C 25°C -55°C

6.0

8.0

10

Vin, INPUT VOLTAGE (VOLTS)

Vin, INPUT VOLTAGE (VOLTS)

Figure 10. VDD @ 7.5 V, VEE @ ­ 7.5 V

Figure 11. VDD @ 5.0 V, VEE @ ­ 5.0 V

700 RON, ON" RESISTANCE (OHMS) RON, ON" RESISTANCE (OHMS) 600 500 400 300 200 100 0 -10 -8.0 -6.0 -4.0 -2.0 0 2.0 TA = 125°C 25°C -55°C 4.0 6.0 8.0 10

350 300 250 200 150 100 50 0 -10

TA = 25°C VDD = 2.5 V

5.0 V 7.5 V

-8.0 -6.0

-4.0 -2.0

0

2.0

4.0

6.0

8.0

10

Vin, INPUT VOLTAGE (VOLTS)

Vin, INPUT VOLTAGE (VOLTS)

Figure 12. VDD @ 2.5 V, VEE @ ­ 2.5 V

Figure 13. Comparison at 25_C, VDD @ ­ VEE

http://onsemi.com
7

MC14551B
APPLICATIONS INFORMATION Figure A illustrates use of the on­chip level converter detailed in Figure 2. The 0­to­5 volt Digital Control signal is used to directly control a 9 Vp­p analog signal. The digital control logic levels are determined by VDD and VSS. The VDD voltage is the logic high voltage; the VSS voltage is logic low. For the example, VDD = + 5 V = logic high at the control inputs; V SS = GND = 0 V = logic low. The maximum analog signal level is determined by V DD and VEE. The VDD voltage determines the maximum recommended peak above VSS. The VEE voltage determines the maximum swing below VSS. For the example, VDD ­ VSS = 5 volt maximum swing above VSS; VSS ­ VEE = 5 volt maximum swing below VSS. The example shows a ± 4.5 volt signal which allows a 1/2 volt
+5 V VDD +5 V 9 Vp-p ANALOG SIGNAL SWITCH I/O VSS VEE

margin at each peak. If voltage transients above VDD and/or below VEE are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping. The absolute maximum potential difference between VDD and VEE is 18.0 volts. Most parameters are specified up to 15 volts which is the recommended maximum difference between VDD and VEE. Balanced supplies are not required. However, V SS must be greater than or equal to VEE. For example, VDD = + 10 volts, VSS = + 5 volts, and VEE = ­ 3 volts is acceptable. See the table below.
-5 V

+4.5 V 9 Vp-p ANALOG SIGNAL

COMMON O/I MC14551B

GND

EXTERNAL CMOS DIGITAL CIRCUITRY

0-TO-5 V DIGITAL CONTROL SIGNAL

CONTROL

-4.5 V

Figure A. Application Example
VDD VDD

Dx SWITCH I/O Dx COMMON O/I

Dx

Dx

VEE

VEE

Figure B. External Schottky or Germanium Clipping Diodes

Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
POSSIBLE SUPPLY CONNECTIONS
VDD In Volts +8 +5 +5 +5 VSS In Volts 0 0 0 0 VEE In Volts ­8 Control Inputs Logic High/Logic Low In Volts + 8/0 + 5/0 + 5/0 + 5/0 Maximum Analog Signal Range In Volts + 8 to ­ 8 = 16 Vp­p ­ 12 0 + 5 to ­ 12 = 17 Vp­p + 5 to 0 = 5 Vp­p ­5 ­5 + 5 to ­ 5 = 10 Vp­p + 10 + 10/ + 5 + 10 to ­ 5 = 15 Vp­p

http://onsemi.com
8

MC14551B
PACKAGE DIMENSIONS
PDIP­16 P SUFFIX CASE 648­08 ISSUE R
­A­
16 9

B
1 8

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A B C D F G H J K L M S INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01

F S

C

L

­T­ H G D
16 PL

SEATING PLANE

K

J T A
M

M

0.25 (0.010)

M

http://onsemi.com
9

MC14551B
PACKAGE DIMENSIONS
SOIC­16 D SUFFIX CASE 751B­05 ISSUE J
­A­
16 9 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019

­B­
1 8

P

8 PL

0.25 (0.010)

M

B

S

G F

K C ­T­
SEATING PLANE

R

X 45 _

M D
16 PL M

J

0.25 (0.010)

T B

S

A

S

http://onsemi.com
10

MC14551B
PACKAGE DIMENSIONS

SOEIAJ­16 F SUFFIX PLASTIC EIAJ SOIC PACKAGE CASE 966­01 ISSUE O
LE Q1 E HE
1 8

16

9

M_ L DETAIL P

Z D e A VIEW P

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). DIM A A1 b c D E e HE L LE M Q1 Z MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 --0.78 INCHES MIN MAX --0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 --0.031

c

b 0.13 (0.005)
M

A1 0.10 (0.004)

http://onsemi.com
11

MC14551B

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303­675­2175 or 800­344­3860 Toll Free USA/Canada Fax: 303­675­2176 or 800­344­3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303­675­2167 or 800­344­3810 Toll Free USA/Canada N. American Technical Support: 800­282­9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor ­ European Support German Phone: (+1) 303­308­7140 (Mon­Fri 2:30pm to 7:00pm CET) Email: ONlit­[email protected] French Phone: (+1) 303­308­7141 (Mon­Fri 2:00pm to 7:00pm CET) Email: ONlit­[email protected] English Phone: (+1) 303­308­7142 (Mon­Fri 12:00pm to 5:00pm GMT) Email: [email protected] EUROPEAN TOLL­FREE ACCESS*: 00­800­4422­3781 *Available from Germany, France, Italy, UK CENTRAL/SOUTH AMERICA: Spanish Phone: 303­308­7143 (Mon­Fri 8:00am to 5:00pm MST) Email: ONlit­[email protected] ASIA/PACIFIC: LDC for ON Semiconductor ­ Asia Support Phone: 303­675­2121 (Tue­Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001­800­4422­3781 Email: ONlit­[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4­32­1 Nishi­Gotanda, Shinagawa­ku, Tokyo, Japan 141­0031 Phone: 81­3­5740­2745 Email: [email protected] ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

http://onsemi.com
12

MC14551B/D