Text preview for : 1n5245b.pdf part of creative megaworks 510d Creative Megaworks 510d Updated



Back to : Creative Megaworks 510d.r | Home

1N5221B to 1N5267B
Vishay Semiconductors

Small Signal Zener Diodes

Features
· Silicon Planar Power Zener Diodes · Standard Zener voltage tolerance is ± 5 % e2 · These diodes are also available in MiniMELF case with the type designation TZM5221 ... TZM5267, SOT23 case with the type designations MMBZ5225 ... MMBZ5267 and SOD123 case with the types designations MMSZ5225 ... MMSZ5267 · Lead (Pb)-free component · Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

94 9367

Applications
· Voltage stabilization

Mechanical Data
Case: DO35 Glass case Weight: approx. 125 mg Cathode Band Color: black Packaging codes/options: TAP/10 k per Ammopack (52 mm tape), 30 k/box TR/10 k per 13" reel, 30 k/box

Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Parameter Power dissipation Z-current Test condition TL 25 °C Symbol Ptot IZ Value 500 Ptot/VZ Unit mW mA

Thermal Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter Junction temperature Storage temperature range Test condition Symbol RthJA Tj Tstg Value 300 175 - 65 to + 175 Unit K/W °C °C Thermal resistance junction to ambient air l = 4 mm, TL = constant

Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter Forward voltage Test condition IF = 200 mA Symbol VF Min Typ. Max 1.1 Unit V

Document Number 85588 Rev. 1.7, 23-Mar-07

www.vishay.com 1

1N5221B to 1N5267B
Vishay Semiconductors Electrical Characteristics
1N5221B...1N5267B
Partnumber Nominal Zener Voltage1) at IZT, VZ V 1N5221B 1N5222B 1N5223B 1N5224B 1N5225B 1N5226B 1N5227B 1N5228B 1N5229B 1N5230B 1N5231B 1N5232B 1N5233B 1N5234B 1N5235B 1N5236B 1N5237B 1N5238B 1N5239B 1N5240B 1N5241B 1N5242B 1N5243B 1N5244B 1N5245B 1N5246B 1N5247B 1N5248B 1N5249B 1N5250B 1N5251B 1N5252B 1N5253B 1N5254B 1N5255B 1N5256B 1N5257B 1N5258B 1N5259B 1N5260B 1N5261B 1N5262B 1N5263B 1N5264B 2.4 2.5 2.7 2.8 3 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6 6.2 6.8 7.5 8.2 8.7 9.1 10 11 12 13 14 15 16 17 18 19 20 22 24 25 27 28 30 33 36 39 43 47 51 56 60 IZT mA 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 9.5 9 8.5 7.8 7.4 7 6.6 6.2 5.6 5.2 5 4.6 4.5 4.2 3.8 3.4 3.2 3 2.7 2.5 2.2 2.1 Test Current Maximum Dynamic Impedance1) ZZT at IZT 30 30 30 30 29 28 24 23 22 19 17 11 7 7 5 6 8 8 10 17 22 30 13 15 16 17 19 21 23 25 29 33 35 41 44 49 58 70 80 93 105 125 150 170 Maximum Dynamic Impedance ZZK at IZK = 0.25 mA 1200 1250 1300 1400 1600 1600 1700 1900 2000 1900 1600 1600 1600 1000 750 500 500 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 700 700 800 900 1000 1100 1300 1400 Typical Temperature of Coeffizient at IZT (%/K) - 0.085 - 0.085 - 0.080 - 0.080 - 0.075 - 0.070 - 0.065 - 0.060 + 0.055 + 0.030 + 0.030 + 0.038 + 0.038 + 0.045 + 0.050 + 0.058 + 0.062 + 0.065 + 0.068 + 0.075 + 0.076 + 0.077 + 0.079 + 0.082 + 0.082 + 0.083 + 0.084 + 0.085 + 0.086 + 0.086 + 0.087 + 0.088 + 0.089 + 0.090 + 0.091 + 0.091 + 0.092 + 0.093 + 0.094 + 0.095 + 0.095 + 0.096 + 0.096 + 0.097 Maximum Reverse Leakage Current IR µA 100 100 75 75 50 25 15 10 5 5 5 5 5 5 3 3 3 3 3 3 2 1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 VR V 1 1 1 1 1 1 1 1 1 2 2 3 3.5 4 5 6 6.5 6.5 7 8 8.4 9.1 9.9 10 11 12 13 14 14 15 17 18 19 21 21 23 25 27 30 33 36 39 43 46

www.vishay.com 2

Document Number 85588 Rev. 1.7, 23-Mar-07

1N5221B to 1N5267B
Vishay Semiconductors
Partnumber Nominal Zener Voltage1) at IZT, VZ V 1N5265B 1N5266B 1N5267B
1)

Test Current

Maximum Dynamic Impedance1) ZZT at IZT 185 230 270

Maximum Dynamic Impedance ZZK at IZK = 0.25 mA 1400 1600 1700

Typical Temperature of Coeffizient at IZT (%/K) + 0.097 + 0.097 + 0.098

Maximum Reverse Leakage Current IR µA 0.1 0.1 0.1 VR V 47 52 56

IZT mA 2 1.8 1.7

62 68 75

Based on dc-measurement at thermal equilibrium; lead length = 9.5 (3/8 "); thermal resistance of heat sink = 30 K/W

Typical Characteristics
Tamb = 25 °C, unless otherwise specified

RthJA - Therm. Resist. Junction Ambient (K/W)

VZtn - Relative Voltage Change

500 400 300 l 200 100 TL = constant 0 0 5 10 15 20
95 9611

1.3
VZtn = VZt/VZ (25 °C)

1.2 1.1 1.0 0.9 0.8 - 60
95 9599

TKVZ = 10 x 10-4/K 8 x 10-4/K 6 x 10-4/K 4 x 10-4/K 2 x 10-4/K

l

0
- 2 x 10-4/K - 4 x 10-4/K

0

60

120

180

240

I - Lead Length (mm)

Tj - Junction Temperature (°C)

Figure 1. Thermal Resistance vs. Lead Length

Figure 3. Typical Change of Working Voltage vs. Junction Temperature

Ptot - Total Power Dissipation (mW)

1000
VZ - Voltage Change (mV)

600 500 400 300 200 100 0 0

Tj = 25 °C

100

IZ = 5 mA

10

1 0
95 9598

5

10

15

20

25

40

80

120

160

200

VZ - Z-Voltage (V)

95 9602

Tamb - Ambient Temperature (°C)

Figure 2. Typical Change of Working Voltage under Operating Conditions at Tamb = 25 °C

Figure 4. Total Power Dissipation vs. Ambient Temperature

Document Number 85588 Rev. 1.7, 23-Mar-07

www.vishay.com 3

1N5221B to 1N5267B
Vishay Semiconductors

TKVZ - Temperature Coefficient of VZ (10-4/K)

15

100 80 IZ - Z-Current (mA)
Ptot = 500 mW Tamb = 25 °C

10

60 40 20 0

5
IZ = 5 mA

0

-5 0
95 9600

10

20 40 30 VZ - Z-Voltage (V)

50

0
95 9604

4

6

8

12

20

VZ - Z-Voltage (V)

Figure 5. Temperature Coefficient of Vz vs. Z-Voltage

Figure 8. Z-Current vs. Z-Voltage

200 CD - Diode Capacitance (pF)

50 40 30 20 10 0 15
95 9607

150
VR = 2 V Tj = 25 °C

100

50

0 0
95 9601

5

10

15

20

25

IZ - Z-Current (mA)

Ptot = 500 mW Tamb = 25 °C

20

25

30

35

VZ - Z-Voltage (V)

VZ - Z-Voltage (V)

Figure 6. Diode Capacitance vs. Z-Voltage

Figure 9. Z-Current vs. Z-Voltage

10
Tj = 25 °C

rZ - Differential Z-Resistance ()

100

1000

IF - Forward Current (mA)

IZ = 1 mA

100
5 mA

1

0.1 0.01 0.001 0 0.2 0.4 0.6 0.8 1.0

10 10 mA

1

Tj = 25 °C

0
95 9606

5

10

15

20

25

95 9605

VF - Forward Voltage (V)

VZ - Z-Voltage (V)

Figure 7. Forward Current vs. Forward Voltage

Figure 10. Differential Z-Resistance vs. Z-Voltage

www.vishay.com 4

Document Number 85588 Rev. 1.7, 23-Mar-07

1N5221B to 1N5267B
Vishay Semiconductors

Zthp - Thermal Resistance for Pulse Cond. (KW)

1000

tP/T = 0.5 100 tP/T = 0.2 Single Pulse 10 tP/T = 0.1 tP/T = 0.02 iZM = (- VZ + (VZ2 + 4rzj x T/Zthp) 1/2)/(2rzj) 100 101 tP - Pulse Length (ms) 102 tP/T = 0.01 tP/T = 0.05 1 10-1
95 9603

RthJA = 300 K/W T = Tjmax - Tamb

Figure 11. Thermal Response

Package Dimensions in millimeters (inches): DO35
Cathode Identification
0.55 max. (0.022)

Rev. 6 - Date: 29. January 2007 Document no.: 6.560-5004.02-4
94 9366

Document Number 85588 Rev. 1.7, 23-Mar-07

1.7 (0.067)

1.5 (0.059)
www.vishay.com 5

26 min. (1.024)

3.9 max. (0.154)

26 min. (1.024)

1N5221B to 1N5267B
Vishay Semiconductors Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

www.vishay.com 6

Document Number 85588 Rev. 1.7, 23-Mar-07

Legal Disclaimer Notice
Vishay

Notice
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 Revision: 08-Apr-05

www.vishay.com 1