Text preview for : lm2904.pdf part of SGS-Thomson LM2904 Low power dual operational amplifiers
Back to : lm2904.pdf | Home
LM2904
LOW POWER DUAL OPERATIONAL AMPLIFIERS
. . . . . . . . .
INTERNALLY FREQUENCY COMPENSATED LARGE DC VOLTAGE GAIN : 100dB WIDE BANDWIDTH (unity gain) : 1.1MHz (temperature compensated) VERY LOW SUPPLY CURRENT/AMPLI (500µA) - ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT : 20nA (temperature compensated) LOW INPUT OFFSET CURRENT : 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (VCC 1.5V)
N DIP8 (Plastic Package)
D SO8 (Plastic Micropackage)
ORDER CODES
Part Number LM2904 Temperature Range 40oC, +125oC Package · ·
2904-01.TBL 2904-01.EPS
N
D
DESCRIPTION This circuit consists of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventionalop-amp circuits which now can be more easilyimplemented in single power supply systems. For example, these circuits canbe directly operatedoff the standard+ 5V power supply voltage which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. The gain-bandwidth product is temperature compensated.
October 1994
Example : LM2904D
PIN CONNECTIONS (top views)
1 2 3 4 + +
8 7 6 5
1 - Output 1 2 - Inverting input 1 3 - Non-inverting input 1 4 - V CC
5 6 7 8
- Non-inverting input 2 - Inverting input 2 - Ouput 2 - VCC+ 1/11
LM2904
SCHEMATIC DIAGRAM (1/2 LM2904)
V CC
6µA
4µA CC
100µA
Q5 Q6
Inverting input
Q2 Q1
Q3 Q4 Q11 Output Q13 Q10 Q12 Q7 R SC
Non-inverting input
Q8
Q9 50µA GND
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Iin Toper Tstg Supply Voltage Input Voltage Differential Input Voltage Output Short-circuit Duration - (note 2) Power Dissipation Input Current - (note 1) Operating Free-air Temperature Range Storage Temperature Range Parameter Value +32 0.3 to +32 +32 Infinite 500 50 40 to +125 65 to +150 mW mA
o o
Unit V V V
C C
2/11
2904-02.TBL
2904-02.EPS
LM2904
ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC = Ground, VO = 1.4V, Tamb = 25oC (unless otherwise specified)
Symbol Vio Iio Iib Avd Parameter Input Offset Voltage - (note 3) Tamb = 25oC Tmin. Tamb Tmax. Input Offset Current o Tamb = 25 C Tmin. Tamb Tmax. Input Bias Current - (note 4) o Tamb = 25 C Tmin. Tamb Tmax. Large Signal Voltage Gain (VCC = +15V, RL = 2k, VO = 1.4V to 11.4V) o Tamb = 25 C Tmin. Tamb Tmax. Supply Voltage Rejection Ratio (R S = 10k) (VCC+ = 5 to 30V) Tamb = 25oC Tmin. Tamb Tmax. Supply Current, all Amp, no Load VCC = +5V, Tmin. Tamb Tmax. VCC = +30V, Tmin. Tamb Tmax. Input Common Mode Voltage Range (VCC = +30V) - (note 6) Tamb = 25oC Tmin. Tamb Tmax. Common-mode Rejection Ratio (R S = 10k) Tamb = 25oC Tmin. Tamb Tmax. Output Short Circuit Current (VCC = +15V, Vo = 2V, Vid = +1V) Output Current Sink (Vid = -1V) VCC = +15V, VO = 2V VCC = +15V, VO = +0.2V Output Voltage Swing (RL = 2k) Tamb = 25oC Tmin. Tamb Tmax. + High Level Output Voltage (VCC = 30V) o R L = 2k Tamb = 25 C Tmin. Tamb Tmax. R L = 10k Tamb = 25oC Tmin. Tamb Tmax. Low Level Output Voltage (RL = 10k) Tamb = 25oC Tmin. Tamb Tmax. Slew Rate (V CC = 15V, VI = 0.5 to 3V, RL = 2k, o CL = 100pF, Tamb = 25 C, unity gain) Gain Bandwidth Product (VCC = 30V, f = 100kHz, Tamb = 25oC, Vin = 10mV, R L = 2k, CL = 100pF) Total Harmonic Distortion (f = 1kHz, Av = 20dB, RL = 2k, VCC = 30V, CL = 100pF, Tamb = 25oC, VO = 2 PP) Min. Typ. 2 Max. 7 9 nA 2 30 40 nA 20 150 200 V/mV 50 25 100 dB 65 65 100 mA 0.7 1.2 2 V 0 0 70 60 20 10 12 0 0 26 26 27 27 27 28 mV 5 20 20 V/µs 0.3 0.6 MHz 0.7 1.1 % 0.02
2904-03.TBL
Unit mV
SVR
ICC Vicm
VCC+1.5 VCC+2 dB 85 mA 40 20 50 VCC+1.5 VCC+2 60 mA µA V
CMR
IO Isink
VOPP VOH
V
VOL SR GBP
THD
3/11
LM2904
ELECTRICAL CHARACTERISTICS (continued)
Symbol DVio DIio VO1/VO2
Notes :
Parameter Input Offset Voltage Drift Input Offset Current Drift Channel Separation (note 5) 1kHz f 20kHz
Min.
120
1. This input current only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than 0.3V. 2. Short-circuits from the output to VCC can cause excessive heating if VCC + > 15V. The maximum output current is approximatively 40mA independent of the magnitude of VCC . Destructive dissipation can result from simultaneous short-circuits on all amplifi ers. 3. VO = 1.4V, RS = 0, 5V < V CC+ < 30V, 0 < Vic < VCC + 1.5V. 4. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. 6. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V CC+ 1.5V. But either or both inputs can go to +32V without damage.
4/11
2904-03.EPS
2904-04.TBL
Typ. 7 10
Max. 30 300
Unit µV/oC pA/oC dB
LM2904
5/11
2904-04.EPS
LM2904
160 VOLTAGE (dB) GAIN INPUT CURRENT (nA) RL =20k 120 80 40 RL =2k
100 75 50 25 Tamb=+25°C
2904-05.EPS
160 VOLTAGE (dB) GAIN RL=20k 120 80 40 RL=2k
GAIN BANDW PRO IDTH DUCT Hz) (M
2904-07.EPS
POW ERSUPPLYEJECTION (dB) R RATIO
COMMNM O ODE REJECTION (dB) RATIO
2904-09.EPS
6/11
2904-10.EPS
115 110 SVR 105 100 95 90 85 80 75 70 65 60 -55-35-15 5 25456585105125 TEMPERATURE(°C)
115 110 105 100 95 90 85 80 75 70 65 60 -55-35-15 5 254565 85105125 TEMPERATURE(°C)
2904-08.EPS
0 10 20 30 POSITIVESUPPLYVOLTAGE(V)
1.5 1.35 1.2 1.05 0.9 V = 15V 0.75 CC 0.6 0.45 0.3 0.15 0 -55-35-15 5 2545 65 85105 125 TEM PERATURE(°C)
2904-06.EPS
0 10 20 30 40 POSITIVESUPPLYVOLTAGE(V)
0 10 20 30 POSITIVESUPPLYVOLTAGE(V)
LM2904
TYPICAL APPLICATIONS (single supply voltage) VC C = +5V DC AC COUPLED INVERTING AMPLIFIER AC COUPLED NON-INVERTING AMPLIFIER
Rf 100k R1 CI 10k
1/2 LM 2904
R A V=- f R1 (as shown A =-10) V C o 0 eo
RL 10k
R1 100k C1 0.1µ F
R2 1M
A V=1 +R2 R1 (asshown A =11) V Co
0 eo R L 10k
2V PP
CI
R3 1M
1/2 LM 2904
2V PP
eI ~
R2 V 100k CC
R B 6.2k R3 100k
RB 6.2k eI ~ R4 100k
C1 10µ F
C2 10µ F
V CC
R5 100k
2904-11.EPS
NON-INVERTING DC AMPLIFIER
DC SUMMING AMPLIFIER
e1
AV=1 + R2 R1 (AsshownAV =101)
100k
10k
1/2 LM2904
eO +5V
100k e2 100k 100k
1/2 LM2904
eO
R1 10k
R2 1M
eO (V)
e3
0
100k
eI (mV)
e4
2904-13.EPS
100k
2904-14.EPS
eo = e1 + e2 - e3 - e 4 where (e 1 + e2) (e3 + e 4) to keep eo 0V
7/11
2904-12.EPS
LM2904
HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT
II eI
R1 100k R2 100k
1/2 LM2904
IB LM2904 2N929 0.001µF
1/2
eo
R4 100k R3 100k
1/2 LM 2904
IB
+V1 +V2
if R 1 = R 5 and R 3 = R 4 = R 6 = R 7 2R1 e o = [ 1+ ] (e 2 - e1)
Vo
IB
IB 3M
1/2 LM2904
1.5M
IB
Input current compensation
R2
As shown eo = 101 (e2 - e 1).
2904-15.EPS 2904-16.EPS
HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER
LOW DRIFT PEAK DETECTOR
R1 100k R3 100k R4 100k
IB
1/2 LM2904
e1 R2 2k
1/2 LM2904
IB LM2904 1µ F C 2IB 2N929 2IB R 1M
1/2
eo
Gain adjust
1/2 LM2904
eO
eI
Zo
0.001µ F IB 3R 3M IB
1/2 LM2904
ZI
R5 100k R6 100k R7 100k
1/2 LM2904
e2
Input current compensation
if R 1 = R 5 and R 3 = R 4 = R 6 = R7 2R1 eo = [ 1+ ] (e2 - e1) As shown e o = 101 (e2 - e1)
2904-17.EPS 2904-18.EPS
R2
8/11
LM2904
ACTIVE BAND-PASS FILTER
R1 100k R2 100k
1/2 LM2904
C1 330pF
R5 470k
1/2 LM2904
+V1
R4 10M
R3 100k
C2 330pF
1/2 LM2904
R6 470k R7 100k R8 100k
V o
C3 10µ F
V CC
2904-19..EPS
Fo = 1kHz Q = 50 AV = 100 (40dB)
9/11
LM2904
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP OR CERDIP
e4
A a1
L
I
b1
B b e3 Z D
B1 e Z E
8
5
F
1
4
Dimensions A a1 B b b1 D E e e3 e4 F i L Z
Min. 0.51 1.15 0.356 0.204 7.95
Millimeters Typ. 3.32
Max.
Min. 0.020 0.045 0.014 0.008 0.313
Inches Typ. 0.131
Max.
1.65 0.55 0.304 10.92 9.75 2.54 7.62 7.62 6.6 5.08 3.81 1.52
0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.150 0.060
10/11
DIP8.TBL
3.18
0.125
PM-DIP8.EPS
LM2904
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
L C c1 a3 b1
a2 b e3 e
A
s E
D M
8
5
Dimensions A a1 a2 a3 b b1 C c1 D E e e3 F L M S
Min. 0.1 0.65 0.35 0.19 0.25 4.8 5.8
Millimeters Typ.
Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5.0 6.2
o
Min. 0.004 0.026 0.014 0.007 0.010 0.189 0.228
Inches Typ.
Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244
1.27 3.81 3.8 0.4 4.0 1.27 0.6 8 (max.)
o
0.050 0.150 0.150 0.016 0.157 0.050 0.024
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this pub lication are subject to change without notice. This publ ication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
ORDER CODE :
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
11/11
SO8.TBL
PM-SO8.EPS
1
4
F
a1