Text preview for : LM2907.pdf part of national lm2907 pdf
Back to : LM2907.pdf | Home
LM2907/LM2917 Frequency to Voltage Converter
May 2003
LM2907/LM2917 Frequency to Voltage Converter
General Description
The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input. The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA. The collector may be taken above VCC up to a maximum VCE of 28V. The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications. The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output. Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor. n Only one RC network provides frequency doubling n Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)
Features
n Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups n Op amp/comparator has floating transistor output n 50 mA sink or source to operate relays, solenoids, meters, or LEDs n Frequency doubling for low ripple n Tachometer has built-in hysteresis with either differential input or ground referenced input n Built-in zener on LM2917 n ± 0.3% linearity typical n Ground referenced tachometer is fully protected from damage due to swings above VCC and below ground
Applications
n n n n n n n n n n n Over/under speed sensing Frequency to voltage conversion (tachometer) Speedometers Breaker point dwell meters Hand-held tachometer Speed governors Cruise control Automotive door lock control Clutch control Horn control Touch or sound switches
Advantages
n Output swings to ground for zero frequency input n Easy to use; VOUT = fIN x VCC x R1 x C1
Block and Connection Diagrams
Dual-In-Line and Small Outline Packages, Top Views
00794201
00794202
Order Number LM2907M-8 or LM2907N-8 See NS Package Number M08A or N08E
Order Number LM2917M-8 or LM2917N-8 See NS Package Number M08A or N08E
© 2003 National Semiconductor Corporation
DS007942
www.national.com
LM2907/LM2917
Block and Connection Diagrams Dual-In-Line and Small Outline Packages, Top Views
(Continued)
00794203
00794204
Order Number LM2907M or LM2907N See NS Package Number M14A or N14A
Order Number LM2917M or LM2917N See NS Package Number M14A or N14A
www.national.com
2
LM2907/LM2917
Absolute Maximum Ratings
(Note 1)
Power Dissipation LM2907-8, LM2917-8 LM2907-14, LM2917-14 See (Note 1) Operating Temperature Range Storage Temperature Range Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package Vapor Phase (60 seconds) Infrared (15 seconds) 215°C 220°C 260°C -40°C to +85°C -65°C to +150°C 1200 mW 1580 mW
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage Supply Current (Zener Options) Collector Voltage Differential Input Voltage Tachometer Op Amp/Comparator Input Voltage Range Tachometer LM2907-8, LM2917-8 LM2907, LM2917 Op Amp/Comparator 28V 28V 28V 25 mA 28V
± 28V
0.0V to +28V 0.0V to +28V
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Electrical Characteristics
VCC = 12 VDC, TA = 25°C, see test circuit Symbol TACHOMETER Input Thresholds Hysteresis Offset Voltage LM2907/LM2917 LM2907-8/LM2917-8 Input Bias Current VOH VOL I 2, I3 I3 K Pin 2 Pin 2 Output Current Leakage Current Gain Constant Linearity OP/AMP COMPARATOR VOS IBIAS Input Common-Mode Voltage Voltage Gain Output Sink Current Output Source Current Saturation Voltage VC = 1.0 VE = VCC -2.0 ISINK = 5 mA ISINK = 20 mA ISINK = 50 mA ZENER REGULATOR Regulator Voltage Series Resistance Temperature Stability TOTAL SUPPLY CURRENT RDROP = 470 7.56 10.5 +1 3.8 6 15 V mV/°C mA 1.0 40 VIN = 6.0V VIN = 6.0V 0 200 50 10 0.1 0.5 1.0 1.5 3 50 10 500 VCC-1.5V mV nA V V/mV mA mA V V V VIN = ± 50 mVDC VIN = +125 mVDC (Note 3) VIN = -125 mVDC (Note 3) V2 = V3 = 6.0V (Note 4) I2 = 0, V3 = 0 (Note 3) fIN = 1 kHz, 5 kHz, 10 kHz (Note 5) 0.9 -1.0 1.0 0.3 140 VIN = 250 mVp-p @ 1 kHz (Note 2) VIN = 250 mVp-p @ 1 kHz (Note 2) VIN = 250 mVp-p @ 1 kHz (Note 2) 3.5 5 0.1 8.3 2.3 180 240 0.1 1.1 +1.0 % 10 15 1 mV mV µA V V µA µA Parameter Conditions Min Typ Max Units mV mV
± 10
± 25
30
± 40
Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 101°C/W junction to ambient for LM2907-8 and LM2917-8, and 79°C/W junction to ambient for LM2907-14 and LM2917-14. Note 2: Hysteresis is the sum +VTH - (-VTH), offset voltage is their difference. See test circuit. Note 3: VOH is equal to 3/4 x VCC - 1 VBE, VOL is equal to 1/4 x VCC - 1 VBE therefore VOH - VOL = VCC/2. The difference, VOH - VOL, and the mirror gain, I2/I3, are the two factors that cause the tachometer gain constant to vary from 1.0. Note 4: Be sure when choosing the time constant R1 x C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with I3 x R1. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than 10 M typically.
3
www.national.com
LM2907/LM2917
Electrical Characteristics
(Continued)
Note 5: Nonlinearity is defined as the deviation of VOUT (@ pin 3) for fIN = 5 kHz from a straight line defined by the VOUT @ 1 kHz and VOUT @ 10 kHz. C1 = 1000 pF, R1 = 68k and C2 = 0.22 mFd.
Test Circuit and Waveform
00794206
Tachometer Input Threshold Measurement
00794207
www.national.com
4
LM2907/LM2917
Typical Performance Characteristics
Total Supply Current Zener Voltage vs Temperature
00794240
00794241
Normalized Tachometer Output vs Temperature
Normalized Tachometer Output vs Temperature
00794242
00794243
Tachometer Currents I2 and I3 vs Supply Voltage
Tachometer Currents I2 and I3 vs Temperature
00794244
00794245
5
www.national.com
LM2907/LM2917
Typical Performance Characteristics
Tachometer Linearity vs Temperature
(Continued) Tachometer Linearity vs Temperature
00794246
00794247
Tachometer Linearity vs R1
Tachometer Input Hysteresis vs Temperature
00794248
00794249
Op Amp Output Transistor Characteristics
Op Amp Output Transistor Characteristics
00794251 00794250
www.national.com
6
LM2907/LM2917
Applications Information
The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to ± 28V, which are easily attained with these types of pickups. The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain common-mode voltages above ground, input protection is removed and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode. Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearly between two voltages whose difference is VCC/2. Then in one half cycle of the input frequency or a time equal to 1/2 fIN the change in charge on the timing capacitor is equal to VCC/2 x C1. The average amount of current pumped into or out of the capacitor then is:
CHOOSING R1 AND C1 There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore VO/R1 must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:
It appears R1 can be chosen independent of ripple, however response time, or the time it takes VOUT to stabilize at a new voltage increases as the size of C2 increases, so a compromise between ripple, response time, and linearity must be chosen carefully. As a final consideration, the maximum attainable input frequency is determined by VCC, C1 and I2:
The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter capacitor, then VO = ic x R1, and the total conversion equation becomes: VO = VCC x fIN x C1 x R1 x K Where K is the gain constant -- typically 1.0. The size of C2 is dependent only on the amount of ripple voltage allowable and the required response time.
USING ZENER REGULATED OPTIONS (LM2917) For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9V to 16V, a resistance of 470 will minimize the zener voltage variation to 160 mV. If the resistance goes under 400 or over 600 the zener variation quickly rises above 200 mV for the same input variation.
7
www.national.com
LM2907/LM2917
Typical Applications
Minimum Component Tachometer
00794208
00794209
www.national.com
8
LM2907/LM2917
Typical Applications
(Continued) Zener Regulated Frequency to Voltage Converter
00794210
Breaker Point Dwell Meter
00794211
9
www.national.com
LM2907/LM2917
Typical Applications
(Continued) Voltage Driven Meter Indicating Engine RPM VO = 6V @ 400 Hz or 6000 ERPM (8 Cylinder Engine)
00794212
Current Driven Meter Indicating Engine RPM IO = 10 mA @ 300 Hz or 6000 ERPM (6 Cylinder Engine)
00794213
www.national.com
10
LM2907/LM2917
Typical Applications
(Continued) Capacitance Meter VOUT = 1V10V for CX = 0.01 to 0.1 mFd (R = 111k)
00794214
Two-Wire Remote Speed Switch
00794215
11
www.national.com
LM2907/LM2917
Typical Applications
(Continued) 100 Cycle Delay Switch
00794216
Variable Reluctance Magnetic Pickup Buffer Circuits
00794239
Precision two-shot output frequency equals twice input frequency.
00794217
Pulse height = VZENER
www.national.com
12
LM2907/LM2917
Typical Applications
Finger Touch or Contact Switch
(Continued)
00794219
00794218
Flashing LED Indicates Overspeed
00794220
Flashing begins when fIN 100 Hz. Flash rate increases with input frequency increase beyond trip point.
13
www.national.com
LM2907/LM2917
Typical Applications
(Continued)
Frequency to Voltage Converter with 2 Pole Butterworth Filter to Reduce Ripple
00794221
Overspeed Latch
00794223
00794222
www.national.com
14
LM2907/LM2917
Typical Applications
(Continued)
Some Frequency Switch Applications May Require Hysteresis in the Comparator Function Which can be Implemented in Several Ways:
00794224
00794225 00794226
00794227 00794228
15
www.national.com
LM2907/LM2917
Typical Applications
(Continued)
Changing the Output Voltage for an Input Frequency of Zero
00794230
00794229
Changing Tachometer Gain Curve or Clamping the Minimum Output Voltage
00794232
00794231
www.national.com
16
LM2907/LM2917
Anti-Skid Circuit Functions
"Select-Low" Circuit
00794234
VOUT is proportional to the lower of the two input wheel speeds.
00794233
"Select-High" Circuit
00794236
VOUT is proportional to the higher of the two input wheel speeds.
00794235
"Select-Average" Circuit
00794237
17
www.national.com
LM2907/LM2917
Equivalent Schematic Diagram
00794238
*This connection made on LM2907-8 and LM2917-8 only. **This connection made on LM2917 and LM2917-8 only.
www.national.com
18
LM2907/LM2917
Physical Dimensions
unless otherwise noted
inches (millimeters)
8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC Order Number LM2907M-8 or LM2917M-8 NS Package Number M08A
Molded SO Package (M) Order Number LM2907M or LM2917M NS Package Number M14A
19
www.national.com
LM2907/LM2917
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N) Order Number LM2907N-8 or LM2917N-8 NS Package Number N08E
Molded Dual-In-Line Package (N) Order Number LM2907N or LM2917N NS Package Number N14A
www.national.com
20
LM2907/LM2917 Frequency to Voltage Converter
Notes
LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
National Semiconductor Asia Pacific Customer Support Center Email: [email protected]
National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.